日本語版の大規模言語モデルLLMを使ってみた。rinna社バージョン

日本語版の大規模言語モデルが登場

ついに日本語で学習された大規模言語モデルが登場しましたね。
それも同じ日に、2つ同時です。

一つはサイバーエージェント社の日本語LLM。
もうひとつは rinna社の日本語LLM。

サイバーのやつはパラメータ数が68億。
rinna社のやつは36億。

まあ、億を超えてるわけで、すごいことなんですが、何と言ってもChatGPTが1750億。

GPT-4なんかは公開せずっていう(多分何兆レベル。scaling low理論の限界にチャレンジですかね。詳しくはscaling lowで検索)。

すごい数のパラメータがひしめきあってるので、30億でも「ふーん、そうなのね」で済んでしまう。

でもこれだけのパラメータ数で、しかも日本語を専用に学習させたモデルですから、期待は持てます。

ちなみに大規模言語モデルっていうのは、略称するとLLM(Large Language Model)と呼ばれています。

ChatGPTに大規模言語モデルLLMについて聞いてみた

意味をChatGPTに聞いてみましょう。

*****************ここから。原文ママ

大規模言語モデルは、近年の人工知能の進歩の中で重要な役割を果たしています。これらのモデルは、巨大なデータセットを学習し、自然言語の理解と生成を行うことができます。大規模言語モデルは、機械翻訳、文章生成、会話エージェント、情報検索、自動要約など、さまざまなタスクに利用されています。

大規模言語モデルの一例としては、GPT-3が挙げられます。GPT-3は、OpenAIが開発した最先端のモデルであり、数十億のパラメータを持っています。このモデルは、人間に近い文章を生成することができ、非常に優れた性能を持っています。

しかし、大規模言語モデルにはいくつかの制約も存在します。それらは、計算リソースの要求、データのプライバシーとセキュリティの問題、バイアスや偏見の反映などです。これらの制約に対処するためには、モデルの開発者や利用者が倫理的な観点を考慮し、適切なガイドラインや規制を策定する必要があります。

大規模言語モデルの進化は、今後ますます加速していくことが予想されます。より高度な自然言語処理能力を持つモデルが登場し、私たちの日常生活やビジネスの様々な側面に影響を与えるでしょう。しかし、その発展には慎重なアプローチが求められ、技術と倫理のバランスを取りながら進めていく必要があります。

************ここまで。原文ママ

だそうです。
GPT-3のパラメータ数は違ってますね。
1750億ですよね。

まあ、さておき。
早速、インストールして使ってみましょう。

rinna社の対話モデルをインストール

まずはrinna社から。

rinna社のやつはモデルが2つあって、汎用モデルと対話モデルがあります。
今回は対話に特化したやつの方が面白いかなと思ったので、対話モデルをいじってみましょう。

公開先はHugging face
機械学習のモデルがわんさかアップされているサイトです。

URLはこちら。
汎用GPT言語モデル
https://huggingface.co/rinna/japanese-gpt-neox-3.6b

対話GPT言語モデル
https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft

環境はgoogle colab proのスタンダード。

pro版で、GPUの設定を
A100
ハイメモリ
で、いってみます。

まずは下記のコマンドでインストールしていきます。

パッケージのインストール。
!pip install transformers sentencepiece

続いてこちら。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# トークナイザーとモデルの準備
tokenizer = AutoTokenizer.from_pretrained(
“rinna/japanese-gpt-neox-3.6b-instruction-sft”,
use_fast=False
)
model = AutoModelForCausalLM.from_pretrained(
“rinna/japanese-gpt-neox-3.6b-instruction-sft”
).to(“cuda”)

学習済みのモデルを落として、modelにセットする感じですね。

rinna社の対話モデルで推論してみた

で、推論してみます。

promptに質問文を入れるのですが、結構決まりがあるようで、詳細はHugging faceのサイトを読んでください。

簡単に説明すると、

prompt = “ユーザー: 首都の意味を答えてください。?システム: ”

このように、質問文の後に
システム: ”
を入れてとのこと。
最後は空白を入れるそうです。

では、これで推論のコードを記します。

# プロンプトの準備
prompt = “ユーザー: 首都の意味を答えてください。?システム: ”

# 推論
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors=”pt”)
with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        do_sample=True,
        max_new_tokens=300,
        temperature=0.7,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
output = output.replace(“”, “\n”)
print(output)

 

質問:
首都の意味を答えてください。

回答:
首都とは、国の首都であり、国の政府所在地であり、政府の所在地です。首都とは、国の中央政府や行政の中心であり、国の政治や文化の中心でもあります。

だそうです。
ん〜ん、てな感じもしないことはないですが、結構ちゃんとした答えが返ってきます。
やはり日本語で学習したやつは違いますね。

max_new_tokens=300 の値をいじると、返答の文字数を変動できます。
いろいろいじって遊んでみてください。

別に、サイバーのやつも使ってみましたが、両者ともどっこいどっこいといった所でしょうか。

ChatGPTにはまだまだ勝てない感じですが、こういった日本語LLMもどんどん開発していって、世界をリードしていってほしいものです。

大規模言語モデルLLMの日本語版の今後は?

そういえば先日、日本のスーパーコンピューターの「富岳」でしたっけ。これを使って日本語LLMを作るみたいな発表がありましたよね。

本気出してやれば、計算スピードはピカイチなんだから、結構早く目標を達成できるのではないでしょうか。
ただ、データセットをどうするとか、細かいパラメータの設定なんかは試行錯誤が必要なので、まだまだGAFAMには勝てないでしょう。

でもチャレンジすることに意味があるんですよね。
頑張ってください チーム「富岳」。
期待しています。

*******************

アスキーアートをプログラミング言語のPythonで作ってみた

アスキーアートって何

プログラミングとアートを融合させたい場合に、手っ取り早く表現できるのはこれ。
アスキーアートですね。
まずはご覧ください。

アスキーアートをChatGPTに聞いてみた

今となっては懐かしいアートですが、アスキーアートを知らない人もいると思うので、どんなものかと。
今時のChatGPTに聞いてみました。
以下、回答です。

**********ChatGPT曰く

アスキーアートとは、テキスト文字だけで描かれたアートのことを指します。文字の種類や大きさを調整することで、テキストの視覚的なレイアウトを作り出すことができます。

アスキーアートは、最初のパーソナルコンピュータが普及した1970年代に登場しました。
当時、コンピュータのグラフィック能力は限られており、画像を描くのにテキスト文字を使用することが一般的でした。

この技術は、コンピュータ画面上でプログラムが実行されている間、テキスト文字を使って遊び心のあるイラストを作ることができるという魅力的なアイデアを生み出しました。

アスキーアートは、様々な形式で表現されます。単純な絵文字から、詳細な3Dモデルまで、どんなものでも表現できます。

一部のアスキーアーティストは、手動でアートを作成することもありますが、多くの場合、画像変換ツールやオンラインアプリケーションを使用して、元の画像をテキストで置き換えます。

***********だそうです。

はい、わかりましたか?

アスキーアートをプログラミング言語Pythonで描いてみる

簡単に言うと、アスキーアートてのは、いわゆるテキストで絵やロゴを描いていくってやつです。

アートとしての面白さと、プログラミングの楽しさを感じられるのが、このアスキーアート。

特にプログラミングを始めてみたいけど、数字の羅列や計算とかは面倒だなーって人には、何か面白い結果が出るこのアスキーアートはおすすめです。

アスキーアートを作る

それでは、今回はアスキーアートを作るわけですが、以下のコードをgoogle colabへ貼り付けて、実行します。
ちなみに言語はPython3です。


from PIL import Image
from PIL import Image, ImageDraw

# アスキーアートに変換する画像ファイルのパス
IMAGE_PATH = “/content/○○○.jpg”

# アスキーアートに使用する文字列
ASCII_CHARS = [“@”, “#”, “S”, “%”, “?”, “*”, “+”, “;”, “:”, “,”, “.”]

# アスキーアートの横幅(文字数)
WIDTH = 80

# 画像を開く
image = Image.open(IMAGE_PATH)

# 画像をグレースケールに変換
image = image.convert(“L”)

# 画像のサイズを縮小
width, height = image.size

aspect_ratio = height / width
new_width = WIDTH
new_height = int(WIDTH * aspect_ratio * 0.46)
image = image.resize((new_width, new_height))

# 画像をアスキーアートに変換
pixels = image.getdata()
characters = “”.join([ASCII_CHARS[pixel // 25] for pixel in pixels])
art = “\n”.join([characters[i:(i + new_width)] for i in range(0, len(characters), new_width)])

# アスキーアートを表示
print(art)

# ファイルにアスキーアートを書き込む
with open(“/content/○○○.txt”, “w”) as f:
f.write(art)

# ファイルが保存されたことを確認
import os
if os.path.exists(“/content/○○○.txt”):
print(“アスキーアートをファイルに保存しました。”)
else:
print(“アスキーアートの保存に失敗しました。”)

 

設置した画像を元に、テキストファイルにアスキーアートを描いてくれるものです。

ところが、このテキストファイルに描くやつだと、大きさの関係で人間にはちょっとわかりづらいんですね。

そこで、テキストファイルを画像に変換するコードがこれです。

from PIL import Image
from PIL import Image, ImageDraw

# テキストファイルを開く
with open(‘/content/○○○.txt’, ‘r’) as f:
text = f.read()

# 画像サイズを指定する
width, height = 500, 600

# 画像オブジェクトを作成する
img = Image.new(‘RGB’, (width, height), color = (255, 255, 255))

# テキストを描画するためのオブジェクトを作成する
draw = ImageDraw.Draw(img)

# テキストを画像に描画する
textwidth, textheight = draw.textsize(text)
x = (width – textwidth) / 2
y = (height – textheight) / 2
draw.text((x, y), text, fill=(0, 0, 0))

# 画像を保存する
img.save(‘/content/○○○.jpg’)

 

このコードもgoogle colabへ貼り付けて実行してみましょう。

お次は上記の2つのコードを1個にまとめた方が使い勝手がよろしいかと思い、コードを合体させました。
それがこちら。

from PIL import Image
from PIL import Image, ImageDraw

# アスキーアートに変換する画像ファイルのパス
IMAGE_PATH = “/content/kei001.jpg”

# アスキーアートに使用する文字列
ASCII_CHARS = [“@”, “#”, “S”, “%”, “?”, “*”, “+”, “;”, “:”, “,”, “.”]

# アスキーアートの横幅(文字数)
WIDTH = 80

# 画像を開く
image = Image.open(IMAGE_PATH)

# 画像をグレースケールに変換
image = image.convert(“L”)

# 画像のサイズを縮小
width, height = image.size

aspect_ratio = height / width
new_width = WIDTH
new_height = int(WIDTH * aspect_ratio * 0.46)
image = image.resize((new_width, new_height))

# 画像をアスキーアートに変換
pixels = image.getdata()
characters = “”.join([ASCII_CHARS[pixel // 25] for pixel in pixels])
art = “\n”.join([characters[i:(i + new_width)] for i in range(0, len(characters), new_width)])

# アスキーアートを表示
print(art)

# ファイルにアスキーアートを書き込む
with open(“/content/○○○.txt”, “w”) as f:
f.write(art)

# ファイルが保存されたことを確認
import os
if os.path.exists(“/content/○○○.txt”):
print(“アスキーアートをファイルに保存しました。”)
else:
print(“アスキーアートの保存に失敗しました。”)

# テキストファイルを開く
with open(‘/content/○○○.txt’, ‘r’) as f:
text = f.read()

# 画像サイズを指定する
width, height = 500, 600

# 画像オブジェクトを作成する
img = Image.new(‘RGB’, (width, height), color = (255, 255, 255))

# テキストを描画するためのオブジェクトを作成する
draw = ImageDraw.Draw(img)

# テキストを画像に描画する
textwidth, textheight = draw.textsize(text)
x = (width – textwidth) / 2
y = (height – textheight) / 2
draw.text((x, y), text, fill=(0, 0, 0))

# 画像を保存する
img.save(‘/content/○○○.jpg’)

 

アスキーアートをプログラミング言語のPythonで作ってみたのまとめ

google colabで動作確認済みです。いろいろいじって遊んでみてください。
アスキーアートに使う文字を変えてみるとか、画像の大きさを変えてみるとか。
自分に合ったコードに改造してみてください。

改造して動かしていくと、どんどん腕が上がっていきます。
当然、わからないところやエラーが出たりしますが、そんな時はググったり、チャトッたり(別名GPTったり)なんかで解決していきましょう。

アート系が好きな人、ちょっと変わったプログラミングをしてみたいって方はぜひ!

*******************

ChatGPTを使って、自然言語処理をプログラミングしてみた

ChatGPTに自然言語処理について聞いてみる

昨今のChatGPTの勢いがすごいものがありますね。

確かに使ってみるとわかるのですが、結構質問に対しての優れた回答をしてくれます。
これだけすごいシステムですから、プログラミングをしている者からすると、中身を知りたくなりますよね。

そんなこんなで、GPTシリーズの初期の頃のバージョンであるGPT2の文書生成モデルはどんなものなのかをChatGPTに聞きながら実装してみました。
(ちなみにChatGPTの回答はファクトチェックしていません。なので、間違っている可能性もあります。そこをご了承のほど)

まずは、ChatGPTに以下のプロンプトを投げてみます。

「あなたはシステムエンジニアです。
GPT2のようなシステムを使って、自然言語処理を体感したいです。
環境はgoogle colab
言語はPython。
上記の仕様でPythonコードを書いてください。
一歩づつ考えて実行してください。」

ちなみに、最後の「一歩づつ考えて実行してください。」は、このプロンプトを投げると理数系の精度が上がるらしいプロンプトです。

英語だと
Let’s think step by step.

この一言で数学の計算問題が解けたとかどうとか。

なので、一応、上記の日本語版で付けてみました。

で、返ってきた答えがこれ。

ChatGPTが書いたプログラミングのコード

###### ChatGPTの回答ここから

「はい、理解しました。まずはGoogle ColabでGPT-2の自然言語処理を体験するために必要なライブラリをインストールする必要があります。

以下のコードをGoogle Colabのセルにコピー&ペーストして実行してください。

!pip install transformers

次に、GPT-2を使って文章生成を行うためのコードを以下に示します。

##### pythonコードここから

from transformers import pipeline, set_seed

# 乱数シードを設定
set_seed(42)

# パイプラインを定義
generator = pipeline('text-generation', model='gpt2')

# テキスト生成
text = generator("Hello, I'm ChatGPT and ", max_length=50, num_return_sequences=1)[0]['generated_text']
print(text)

##### pythonコードここまで

このコードをGoogle Colabにコピー&ペーストし、実行してください。すると、”Hello, I’m ChatGPT and “というテキストに続く50文字の文章が生成されます。

上記のコードでは、GPT-2を用いた文章生成を行うために、Transformersというライブラリを使用しています。まず、set_seed()を用いて乱数のシードを固定し、同じ条件下で実行した場合に同じ結果が得られるようにしています。次に、pipeline()を用いてtext-generationというパイプラインを定義しています。このパイプラインを使用すると、GPT-2による文章生成を行うことができます。

最後に、生成するテキストの初めとなる文字列と、最大の文字数、生成するテキストの数を指定し、文章を生成しています。生成された文章は、print()で出力しています。

以上が、Google ColabでGPT-2を使った自然言語処理の体験に必要なコードになります。ご参考にしてください。」

###### ChatGPTの回答ここまで

てか、短かっ。
もっと長々のコードが出力されると思いきや、ほんの数行です。

おまけにtransformersのライブラリを読み込んでの回答です。

Attention層を使ってゴニョゴニョではなく、端折っているところが何とも言えないのですが、シンプルイズベストということで、今回はこのコードを実行してみましょう。

「Hello, I’m ChatGPT and」以降の文章を生成してくれるみたいです。

google colabにコピペして実行する

上記コードをgoogle colabにコピペ。

で、実行します。

結果は見事に文書生成できています。

「Hello, I’m ChatGPT and irc.is. A friend of mine went on a vacation on a recent trip and I came across a list of people where they will send their information (such as how many hours they are, how they」

もちろん、文書の意味は大した回答にはなっていません。
ざっくりモデルですから仕方ないですね。

大ざっぱに自然言語処理の文書生成を知りたい方には、かえって数行のコードですから、わかりやすいかもです。

GPT-3もtransformersライブラリを使ってるのか?

ついでに聞いてみました。

「GPT3もtransformersライブラリを使っているのですか?」

ChatGPTの回答です。

「はい、GPT-3もTransformersライブラリを使用しています。Transformersライブラリは、自然言語処理に関するさまざまなタスクを実行するためのAPIを提供し、GPT-2やGPT-3などの事前学習済み言語モデルを含め、多くのニューラルネットワークモデルをサポートしています。」

とのことです。
(ファクトチェックしてないです。あしからず)

ChatGPTは勉強教材として最高のツール

さて、今回の内容で学べることは、ChatGPTはプログラミングの勉強教材としては結構使えるものだってことです。

書籍を読む時間のない方や、本格的な書籍ほどの知識は要らない、けど、ざっくりとした知見は欲しいって方には、ピンポイントで知りたいことを聞けるツールだってことです。

以前だとググって必要な情報を探したけど、結構時間がかかるんですよね。
ましてやコードが動かないってこともあるし。

ChatGPTの出力したコードはgoogle colabで動かすと大抵はOKですね。
もちろんエラーも出ますけど、その際はググったり、調べたりで修正していけばよろしいかと。

あと、ChatGPTがあるからって、全くの知識がない方がチャレンジしても難しいです。
とりあえず入門書や基本書みたいなのを2、3冊読んでから挑戦してみてください。
でないと、専門用語がわからないですよね。

さて、そんなこんなで、
お次はGBT-3から大規模言語モデルLLMの実装ですかね。
(google colabだけじゃGPU足りませーん)

プログラミングがさらに楽しくなりそうです。

 

chatGPTなどのAIが書いた文章かどうかを判定してみる

chatGPTに書いてもらった文章を判定

さて、今回のテーマは表題の通り「chatGPTなどのAIが書いた文章かどうかを判定してみる」です。

みなさんはchatGPTにいろんな記事や文章を書いてもらってると思います。

それを然るべき場所に提出する際に、提出先がchatGPTでの制作をNGにしている所もあるでしょう。

しかし、chatGPT系に書いてもらった文章かどうかを判断するのは難しいと思いませんか。
確かに、chatGPT系の書いた文章はある種、クセがあるというか、なんとなくchatGPT系ぽい感じもしないではないですよね。

これは大規模言語モデルの特徴でもある、「次に現れるワードが確率的に最大になるものを羅列していく」っていう仕組みになっているからでしょう。

人が書いた時にこういう表現はくどいよなとか、ちょっと漢字や難しい表現が多くないかとか、なんとなくのクセみたいなものがchatGPT系の文章にはあります。

しかし、それを数値的に白黒で判断したいかなと。
そんなご要望に応えたものがこちらになります。

GPTKit
https://gptkit.ai/

openAIの判定サイト
https://platform.openai.com/ai-text-classifier

有名なものが上記の2つのサイト。

上のGPTKitのサイトは、文章を入れて判定ボタンを押すと、確率何%でAIぽいとか教えてくれます。

 

下のopenAIのサイトは確率云々ではなく、「これはAIが書いたっぽい」のような表現をしてくれます。

ちなみに、両方とも英語サイトですので、英語が苦手な方はchromeの翻訳機能などを使って、日本語に直してから利用してください。

ただし、入力する文章は英語にしないとはじかれます。
日本語で書いた文章はgoogle翻訳やdeeplなどで英語に直してから入力しましょう。

それでは、実際にやってみます。

chatGPTにプロンプトを入れて記事を生成

まずはchatGPTに「猫」の記事を書いてもらいます。

まずはプロンプトです。

あなたはプロのブロガーです。
猫をテーマに記事を書いてください。
1000文字以上で書いてください。

で、できたのが下の※印。
ん〜ん。chatGPT系ぽいですね。

なんていうか、くどい。しかも難しい単語を使い過ぎ。

※ 一部を抜粋して表記します。

「猫という生き物は、その可愛らしさと愛らしい外見だけでなく、非常に個性的な性格を持っています。彼らは一般的に自立心が強く、気ままな生き方をすることで知られています。一方で、猫は非常に社交的な生き物でもあります。彼らは家族と共に暮らすことを好み、愛情と注意を求めます。

猫を飼うことは、多くの人々にとって非常に愉快で素晴らしい経験です。しかし、飼い主には猫に関する基本的な知識が必要です。例えば、猫の健康状態を把握するために、猫の体重を定期的に測定し、食事や運動量を調整することが重要です。また、猫は非常に好奇心が強い生き物であるため、彼らが入ってはいけない場所を特定することも重要です」

まだ続きますが、まあこんな感じです。

さて、この文章をdeeplで翻訳します。
で、英語の文章がこちら。

一部抜粋。
「Cats are creatures with very unique personalities, not only because of their cuteness and adorable appearance. They are generally known for their independent and carefree way of life. On the other hand, cats are also very social creatures. They prefer to live with their families and demand love and attention.

Owning a cat is a very pleasant and wonderful experience for many people. However, owners need some basic knowledge about cats. For example, it is important to weigh the cat regularly and adjust its diet and exercise regime in order to monitor its health. It is also important to identify areas they should not enter, as cats are very curious creatures.」

これをGPTKitに入力します。
結果がこちら。
予想通り、falseでAIぽいと判定されました。

 

小学生でもわかる文章だと判定結果は変わるのか

今度は「文章を小学生でもわかるように簡単に書いてください」とプロンプトに書きます。
その後、できた文章を英文に直してGPTKitに入れてみます。

見事にfalse判定。「AIぽい」と判断されました。

こうなってくると、実際にtureの「人間が書いたっぽい」が見たいですよね。

そこで、人が書いたと思われる猫の記事を英文に直して、GPTKitに入力。
すると…。

なんと、ture判定。これは「人間ぽい」と判断しています。さすがですね。

 

なかなかの判定基準です。
では、ここで疑問です。

chatGPTが書いた記事を人間が編集してから判定する

chatGPT系に書いてもらった文章を、人間が読んでそれなりにまとめて書いてみる。
それを判定したらどうなるのかと。

私的には最大の知りたいことです。

そこで、上記のAIが書いた文章をそれなりにまとめてみました。
なるべく、くどくなるのを避けて、且つ、chatGPTの意向は伝えるように書いたつもりです。

一部抜粋。
「猫っていう生き物は可愛らしさもともかく、非常に個性的な一面ももっています。
猫は自立心が強く、気ままな生き方をする動物です。反面、社交性もあり、家族と共に暮らすことを好み、人からの愛情も求めます。

猫を飼うことは人生の楽しみを与えてくれます。しかし、猫を飼う飼い主はそれなりの猫に対する基本的は知識も必要ですね。
まず猫の健康状態を把握するために、体重測定、食事量、運動量の調整などが必要になります。
また猫は非常に好奇心が強い動物なので、彼らが入ってはいけない場所を知ることも大事なんです。
また、定期的な獣医さんによる検診や予防接種も大事になります」

これ以上内容を変えると、AIの書いた文章ではなく、完全な私制作の記事になりそうで難しいところですが、これでいってみましょう。

まず、この文章を英語に翻訳。
で、GPTKitに入れる。
すると、…。

なんとfalse判定。この文章はAIが書いたっぽいと判定されました。
そうですか。さすがですね。

これから推測すると、chatGPT系が書いた記事や文章を元に、オリジナルに変換したものも、ある程度見分けがつくといった答えになります。

どうなんですかね。
chatGPT系に記事の叩き台を作ってもらって、それを元にオリジナルの文章を作る作業は決して間違ってはいないと思うのですが。

ためしに、本家のopenAIのサイトにある判定サイトでも判断してもらいました。
こちらがURLです。
https://platform.openai.com/ai-text-classifier

結果はAIが書いたっぽいと。
ん〜ん。やはりそうですか。見分けられるのですね。

2つのサイトが判定しているのだから、確実なんでしょう。
まあ、AIを使って書いたのが真実ではあるのですが。

そうなると、chatGPT系の書いた文章を叩き台にするのも難しいという事になるんですかね。

あくまでもAIの記事をアイデアにして、完全なオリジナル文章を書いていかないといけない。
そんな感じでしょうか。

chatGPTに記事を書いてもらうなら、この方法がいいのか

ここで、よくあるのが下記のプロンプトです。

あなたはプロのブロガーです。
これから「猫」についての記事を書きます。
この時の見出しを5つ以上書き出してください。

これはよく使いますよね。
これで見出しが5つ以上出てくるのですが、この見出しをさらにプロンプトに入れます。

上記の見出し「○○○」を元に、300字位で記事を書いてください。

これでそこそこの記事が完成しますが、この方法だと間違いなく判定されますね。

人間がchatGPT系を利用するとしたら、この見出しまでにして、見出しからの記事を人が書いていくようにすれば大丈夫かと思います。

また、見出しさえあれば発想のヒントにもなるので、書く力のある人は書けると思います。

今まで、chatGPTを使って記事を量産していたところもあるかと思いますが、これを機に判定サイトでお試しした方がいいかもです。

AIが書いた記事をSEO上、どのような扱いにするのか微妙なところですが、もしNGの場合は再構築していかないと、量産した記事が無駄な作業になってしまいますね。

そうなるとwebライターさんはまだまだ需要があるかもですね。
見出しから記事を書くのはAIではなく、人間なのですから。

おっと、そのwebライターさんも気をつけて。
今後はクライアント先が、上記の判定サイトであなたの納めた記事を判定するかもです。

なんか面倒な世の中になってきましたね。

chatGPTなどのAIが書いた文章かどうかを判定してみるのまとめ

chatGPT系などのAIに文章を書いてもらうのはいいのですが、判定サイトが出てきています。

これらのサイトに上記で書いてもらった文章を入れると、瞬時に確率何%で白か黒かの判定が出ます。

書いた記事を人間が消化してまとめても判定結果は黒。AIが書いたと判定されました。

なので、こういったchatGPT系を使って文章を書く場合は、タイトルと見出しを書いてもらって、そこから先は人間が思考しながら書いた方が間違いないかと思います。(2023年4月現在)

そういう意味ではwebライターさんの職域も、まだまだ生き残れるかも知れないです。
(数ヶ月後、数年後にどうなっているかはわかりませんが)

チャットボットとは

チャットボットとは何か

みなさんチャットボットとはご存じでしょうか。
チャットで身近なところだと、LINEなんかがそうですね。

チャットボットとは、この応答のところを自動でやってくれるシステムのことです。

これをどこで使うかって。
個人ではまず使わないですね。

業務で消費者からの質問が多いところでは結構使われています。

最近の流行りだとchatGPTをLINEで使えるようにしたAIチャットくんなんかもチャットボットの一種ですね。

通常の応答文はあらかじめプログラマーが考えて学習させた文言を使うのですが、chatGPTのAPIを使うことによって、応答文を生成してくれるんですね。

これは結構レベルの高い回答ができるので便利です。
APIの使用料がかかるので、LINEとchatGPTを連携させるよりも、ユーザーの使用量により従量課金の設定の方が、手間のかかるところです。

なので作り方は公開してあっても、なかなかビジネスとして運営しようという人も少ないのが現状です。

だって、数万人の人が同時に使うってことはAPIの使用料がとてつもないですよね。
その金額を一旦こちらで負担して、それぞれのユーザーに請求していくって、なんとも大変すぎる。

結構な資本のあるとこでないと手が出せないシステムですよね。

さあ、そんなチャットボットですが、ウチでも開発提供していますので、ご入用の方はご相談ください。

それでは、チャットボットのイロハを記していきます。

チャットボットの特徴

チャットボットとは、AI技術を使って、テキストチャットで話すプログラムです。

例えば、ウェブサイトやアプリでよく使われていますよね。
自然な言葉で話しかけると、チャットボットは自動的に返事をしてくれます。

チャットボットの一番の特徴は、24時間いつでも話せることなんです。

人のカスタマーサポートは、仕事時間中しか対応できないけど、チャットボットは常に使えるから、いつでも助けてもらえる。

そして、多くの人が同時に話しても、一人のカスタマーサポート担当者が応対できないような大量の質問にも答えられます。

さらに、チャットボットは、自然な言葉を使って話しかけると、その意図を理解して自動的に返事をすることができるんです。
ユーザーは自分の問題や要望をすぐに解決することができ、カスタマーサポート担当者も同じ質問に何回も答える手間を省くことができます。

チャットボットの改善点

そんな便利なチャットボットも、まだ改善しなければならない点もあります。

例えば、チャットボットは人工知能に基づく技術を使用しているため、まだ完璧な解決策を提供できない場合もあります。

また、ユーザーが求める情報とチャットボットが提供する情報が一致しない場合もあるため、それを解消するためには適切なトレーニングが必要なんですね。

みなさんもchatGPTを使っていて、もっともらしいけど、間違った答えを普通に読んでいると思います。
そう、チャットボットとはいえ完璧ではないんですね。

まあ、まだまだ始まったばかりの黎明期ですから、仕方ないっちゃ仕方ないです。

しかし、そんなチャットボットも、今後ますます増えることが予想されてます。
顧客サポートや販売促進など、さまざまな分野で役立つことも期待されてます。

また、より高度な自然言語処理技術の進歩で、今よりも更に自然な対話が可能になるとも予想されてます。

 

チャットボットはこんなとこで使われる

チャットボットの具体的な応用例を紹介します。

● 顧客サポート
チャットボットは、24時間いつでも対応できるため、顧客サポートに利用されることが多いです。

商品の問い合わせやクレーム対応、配送状況の確認など、さまざまな質問に正確に回答することができるんですね。

カスタマーサポート担当者がいない時間帯や、同時に多くの問い合わせがある場合にも役立ちます。

● 販売促進
チャットボットは、ユーザーとの対話を通じて、商品の情報提供や購入の促進を行うこともできます。

商品の特長や価格、在庫状況などの情報を提供し、購入手続きを案内することもできます。

また、キャンペーン情報や割引クーポンの配信など、販売促進なんかにも利用されます。

● ビジネスの効率化
チャットボットは、ビジネスの効率化にも貢献します。

例えば、人事や経理などの業務で、よくある質問や手続きの自動化が可能です。
また、社内の情報共有やスケジュール管理などにも利用されますね。

以上のように、チャットボットはさまざまな分野で活用され、業務の効率化やコスト削減、顧客満足度の向上などに貢献しています。

また、自然な言葉で話しかけることができるため、ユーザーにとっても使いやすく、普及が進むことが予想されます。

チャットボットとは何かのまとめ

チャットボットはAI技術を使って自動返答するプログラムで、消費者からの質問が多い場所やウェブサイト、アプリで活躍しています。

24時間いつでも利用でき、一人の担当者が応対できない大量の質問にも答えることができます。ただし、完璧な解決策を提供できないこともあり、ユーザーとの情報不一致もあります。

今後どんどん改善されて、さらに使いやすいシステムになっていくでしょう。

またchatGPTなどの大規模言語モデルも普及していくので、ますますレベルの高い回答もできるようになります。
今後は、我々のかたわらになくてはならない存在になっていくでしょう。

ホームページ制作を無料で作れるか

ホームページ制作は無料で作れるのだろうか

さて、今回のタイトルは「ホームページ制作を無料で作れるか」ですが、答えはYESです。

ただし、制作費は無料でもホームページというのは、サーバー代と独自ドメイン(○○○.comなど)が月々数百円かかるので、こちらだけ負担してもらう形になります。

それと月々の管理料がかかる場合があります。
その金額はまちまち。また管理料の期間も半永久的なところもあれば、
1、2年で終わるものもあったりで、どこに頼むかで金額が変わってきます。

例えば管理料10000円で半永久的なんていったら、総額で数百万になってしまいます。
(サイトは20年はざらにもちますから、10000円✖️12✖️20で240万円です)

このへんはよくチェックしないと結果的にお高くなりますので、注意が必要です。

管理料はなるべく安い所。
なおかつ、管理料は期間限定で、「この期間が終わったら無料」のところを探すとお得ですね。

ウチでは、今のところ2つの超お得なコースを設置しています(2023年1月現在)。

超お得なホームページ制作無料コース

さて、ウチでは超お得なコースを2つ用意しています(デザインはお任せになります)。

ひとつめがこちら。

●無料でホームページを制作(1〜3ページ)
管理料は月々3800円のみ。
これを12ヶ月でお支払い頂いて終了となります。
以降は管理料は一切かかりません。これはお得ですね。

このコースは起業時などに初期投資をなるべくおさえたい方におすすめです。
私も経験ありますが、起業時はお金がかかりますよね。

なので、なるべくコストをかけたくない。
そんな方におすすめのコースです。

ホームページを自分で作るとすると

ちなみに、ホームページを自分で作ったりする人もいます。
ところが、素人の方が見よう見まねで作っても、SEO対策もできていないので、作って終わり。
誰も辿り着けないホームページの出来上がりになってしまいます。

するとサイトからの集客もなく、ネット上の会社案内ができただけという結果になります。

これは他でも書いているのですが、お金の派生しない趣味サイトはご自分で作られるのもいいと思います。

しかし、お金のやり取りが派生するビジネス系のサイトの場合は、業者に頼んで作ってもらった方が間違いありません。

きちんとしたホームページを作られた方が、後々のサイトからの売上で回収できますので、結果的にお得になるんです。

そこで、なるべく安く、しかもそれなりのホームページを作ってくれる所を探してみてください。
無ければ、ウチでも作れますので、ご依頼ください。

15000円でホームページ制作

●もうひとつのコースはこちら。
なんと15000円でホームページ制作(1〜2ページ)。
月々の管理料も無料。

こちらのコースはホームページがあればいいという方におすすめ。
とりあえずサマになったサイトがあればOKという方も多いでしょう。

そんな方におすすめします。

上記いずれのコースも簡易的ですがSEO対策済みのホームページですので、業種によっては上位表示も期待できます。

ホームページ制作が無料とはいえ

まあ、無料とは言っても、完全に0円で全てができるわけではありません。
上記で書いたように、サーバー代やドメイン代が月々数百円かかりますし、管理料もかかる場合があります。

制作費が無料、0円なんですね。

逆にその方が安心ですよね。
完全無料、0円で毎月も無料なんてサイトを構築できたら、逆にあやしい。
なにかあるんじゃないかって思いますから。

ホームページ制作を無料で作れるかのまとめ

ホームページ制作を無料で作れるかの答えはYESです。

ただし、サーバー代とドメイン代が月々数百円はかかります。
また、場合によっては管理料がかかる場合があります。

この管理料は業者によってまちまちですので、チェックしてみてください。

●ウチではホームページ制作無料のコースと15000円の2つのコースがありますので、よかったら利用してみてください(2023年1月現在)。

youtubeの撮影、編集を趣味にする

youtubeの撮影、編集を趣味にする

youtubeを楽しんでいますか。

じつはyoutubeは見るだけでなく、作る楽しみもあるんです。

今やiphoneで簡単に撮影できる時代。

中古のiphoneを買えば、一昔前の高性能の一眼カメラ並みの性能が手に入ります。

顔出ししなくても、音声を入れなくても、ごく当たり前の日常を撮ってアップするだけ。

これだけで、youtubeを趣味にできるんです。

休みの日にyoutube撮影で暇つぶし

意外と休みの日なんかに、暇で仕方ない時ってありませんか。

もちろん、スマホでゲームしたりでもいいんですが、そんな時こと、スマホで何かを撮影して、編集ソフトで音楽入れたり、スピードを調整したりして遊んでみる。

それでできた作品をyoutubeにアップして、いろんな人に見てもらう。

これって究極の暇つぶしになります。

しかも、上手くすれば登録者も増えて、もしかしたら広告収入が出るかも知れない。

あるいは、企業から案件として広告の依頼がくるかも知れない。

趣味がお金になる可能性がある。
これって夢がありますよね。

もちろん、お金は別な話として、
自分の歴史、自分史として撮影してアップするのもありです。

人間にはいつか寿命がきます。
しかし、youtubeの中であなたは永遠に生き続けるのです。

これって素敵なことだと思いませんか。

youtubeに生きた証を残そう

例えば、今から100年前にもしyoutubeがあれば、100年前の人達に画面で会えるんです。

その時の背景を見て、家や車(100年前は車は無いか)、生活様式を知ることもできるし、
顔出しで何かじゃべっていれば、あるがままの人物像を見ることができる。

今撮影してアップしておけば、あなたにもしもの時にでも、画面上に残ることができるんです。

そして、100年後の人類がそれを見て、何かを感じる。
面白いですよね。

この世に生きてきた証を残していく。
youtubeはそういった使い方もできるんです。

コンテンツをどうするか

さて、いざ撮影しようとして、何を撮ったらいいかわからない時もあります。

題材とかコンテンツって言うんですが、実はこれは何でもいいんです。

ニュースを見て感じたこと。
これを動画で撮影してもいいし、自分の好きなテーマを知り合いと雑談している所を撮ってもいい。

芸能人のyoutuberを見ていて思うのは、結構自分の好きなことを題材にしている場合が多いですね。

ゲームが好きならゲーム実況、ゴルフ好きならゴルフの練習やコースでのプレイ風景。
車が好きなら中古車巡り。バイクも然り。

あなたも自分の好きな趣味があるのなら、それを撮影してアップしましょう。

楽器を弾くのもよし、自慢のバイクとツーリングでもよし、サッカー、野球、バスケなど、なんでも撮影しちゃいましょう。

そして、youtube上で、永遠に証を残していきましょう。

きっと誰かが見てくれます。年に一人でもいいじゃないですか。
いや、見てくれなくてもいいんです。

自分が見る楽しみで十分です。

youtubeを趣味にすると、企業から重宝される

youtubeを趣味にすることで、撮影技術も上がるし、動画編集の力も多少なりともつく。

これからの企業は必ず動画をサイトにアップする時代が来ますから、
youtubeに長けたあなたの実力が企業に評価される時代が来るんです。

えっ、企業が動画を使う時代なんて来ますかねえって。
来るんです。
それはなぜか。

企業にとって一番大事なのはなんでしょう。
人材ですよね。

ある程度軌道にのってきた企業は人材の募集が必要です。

ここで動画が必要になってくるんです。

新人さんにとって一番の不安点は、その企業に入った雰囲気や作業風景が事前にわからないこと。

動画はこれを払拭(ふっしょく)してくれるんです。

どんな仕事風景か、社内の雰囲気、メンバーの面々、作業風景などなど。
文字や言葉でいくら語っても、動画一発でお伝えできます。

そう、「求人」の現場ではこの動画が実に生きてくるんですね。

社長がちょっとおふざけしながら、自分の会社を紹介していく様を見れば、
アットホームで入りやすそうだなと、新人さんには大受けです。

その結果、不真面目な人が多く来るのではとお思いでしょうが、それでも結構。
求人の裾野(すその)をまず広げる。

そこから面接、その他で絞り込んでいく。
まずは応募人数を増やすことが一番大事なんですね。
そのためには動画が必要なんです。

さて、そんな動画の撮影や編集ができるあなたは、その企業にとって非常に価値のある人材となります。

だって、自社で撮影から編集、アップまでできるんですから。
コスト削減には最適です。

これは結構なメリットですよね。

youtubeの撮影のデメリットは何か

デメリットはそうですねえ。初期投資にiphoneがいること位でしょうか。
撮影機材としてのスマホ代。これだけですね。

中古のiphoneで大丈夫です。
2、3万円も出せば、それなりのアイフォンが手に入ります。

画面サイズの小さいものでよければ、数千円で昔の機種が手に入ります。
これで撮影するのもよしでしょう。(画面が小さいと編集がやりづらいですが)

ちなみにアンドロイドのカメラはどう?って話ですが、私的にはiphoneの方がいいと思っています。

撮影に使うカメラ、内部のセンサーなど、やっぱりそこに力を入れて開発しているのは、iphoneです。

なので、スマホで撮影するのならiphone一択。これに尽きます。

youtubeの撮影に顔出しは要らない

動画に顔出しがイヤな人は多いでしょう。
それでも大丈夫。
顔出ししなくても撮影できます。

手元の撮影メインなら顔出しは要らないし、もし全身像が必要なら、お面でもかぶればいい話です。

声だって生の声がイヤなら、今は音声変換ソフトもあります。

ぬいぐるみ着て音声変換すれば、あなたってことは誰にもわからないでしょう。

それなら撮影する意味ないじゃんと言うのなら、なんとなく程度の変装でもいいんじゃないでしょうか。

例えば、目元だけ隠す。
これで帽子をかぶると、知っている人が見ても、わからないでしょう。
(もちろん、声でわかることもありますが)

休みの日のおしゃべり相手にyoutubeは最適

一人で一日中誰ともしゃべらない休みの日。
こんな日こそ、youtubeの出番です。

カメラに向かって言いたいこと言うもよし。
撮影した動画に後からナレーションを吹き込むのもよし。

撮影場所なんか自分の車の中でいいんです。

私なんかyoutubeのナレーションは9割方、車の中で録音しています。
車中は最高の録音スタジオなんですね。(これって、youtuberあるあるでしょう)

一日中しゃべらないとストレスたまりますよね。
そんな時にyoutubeに向かってしゃべると、それなりに充実感があります。
おすすめです。

さあ、こんな感じでyoutubeを趣味にすると、きっとあなたの隙間時間が充実したものになるでしょう。

ぜひyoutubeを趣味にして、楽しい日々を送ってみてください。

youtubeの撮影を趣味にしようのまとめ

youtubeの撮影を趣味にすれば、究極の暇つぶし・楽しみになります。

撮影テクも上がるし、動画編集の力もつくので、企業からも重宝されます。

あなたの暇な時間を最高のものにするために、ぜひyoutube撮影、編集、アップをやってみましょう。

数年後に、人生が変わるかもです。

TVerがYouTubeに勝てない理由

久々の更新です。
コロナ禍で活動に制限がかかり、更新作業もままならなくなっていました。

ただ、もう少しで終わりが見えてきたように感じます。

かつての日本、世界、行き来自由。
普通に生活できる毎日。

もうちょいの辛抱ですね。

TVerがYouTubeに勝てない理由

TVerがYouTubeに勝てない理由、それは何でしょうか?

YouTubeはご存知の方も多いと思います。
一般人を中心に、最近では有名人、著名人も参入している動画配信サイトです。

一方、同じような動画配信サイトにTVerがあります。

こちらはテレビ番組を見逃したやつを数週間見れるサイトです。

あっ、この番組を録画したいなとかありますよね。
でも、たまたま外出中で録画できないとか、様々な理由でダメな時があります。
そんな時に役立つのがTVerです。

サイトに飛んで検索すれば、大抵の見逃した番組は掲載されてますね。
期間限定なので、お早めに見ないとですけど。

さて、そんなTVerですが、当方に限って言えば、TVerを見るか、YouTubeを見るかとなった時に、YouTubeに軍配が上がります。

理由は簡単。CMです。
TVerを見た方はわかると思いますが、結構CMで待たされることが多いんですよね。

YouTubeだと、大抵のCMはスキップできます。
たまにスキップできないCMが流れることもあるのですが、それでも約5秒位なもんです。
5秒のCMは見れますね。

ところがTVerだと、1〜2分ちょいはCMを流してきます。
これが長い。長すぎる。
しかも番組の開始早々に流してくるので、待つわ待つわ。

テレビのように、ちょい見せて途中で流すのではなく、いきなりCMを入れてきます。

動画を見る時ってのは、結構すきま時間に見ることが多いんですね。

テレビの前でたっぷり暇して見ようって訳ではないんです。

通勤の合間、お店での待ち時間、家事の合間など。
ちょっとした時間つぶしに見ることが多いと思います。

そこへ2分も待てますか?

興味のあるCMなら2分も短いでしょう。
しかし、興味のないCMを延々と2分前後も流された日には、相当見たい番組でない限り、TVerを消してYouTubeへと移ってしまいます。

まあ、番組側の気持ちもわかります。
無料で配信しているわけだから、CMくらい見てよと。
でないと有料になっちまうよと。

わかります。しかし、興味のない動画で、貴重なすきま時間をつぶしたくないんですね。
CMは必要だけど、見たくはないと。

最近では、テレビでもCMがうざいので、NHKを中心に見る位ですから。

CM短くできませんか

そこで提案なんですが、もっとCMを短くできませんかね。
できれば5秒以内。
この時間なら見れますよね。

あるいはYouTubeのように開始5秒でスキップできるとか。いろいろ方法はあると思います。

でユーザー側も、開始5秒のCMで興味をひけば、後で検索して本サイトを見たりの行動を取るでしょう。

あるいは、5秒でも脳裏には焼きつきますから、お店で「あっ、これCMで見たな」、「じゃあ買うか」ってな行動にもつながると思います。

少なくても2分のCM流して見ないよりは、5秒のCMを見てもらいましょうよと。
てのが、こちら側見る側の提案なんです。

TVerの番組の質感は高い

確かに、YouTubeと比べると、さすがにお金をかけているだけのことはあって、番組の質感は高いですよね。

まあ、個人的にはシンプルなYouTubeが結構好きで、無駄なテロップや、字幕がないところが、YouTubeの良さだと思ってます。

一方TVerの方は、テレビ番組で放映したやつですから、まあ字幕、テロップ、ワイプ(画面の中の小さい画面、よくタレントの顔をぬいているやつ)のオンパレードで、テレビで見る分にはいいのですが、スマホや小さいタブレットで見ると、逆にうざいなあと感じます。

テンションも高めですしね。
タレントさんは仕事取るために必死ですから、テンションもアゲアゲでのぞみますよね。

YouTubeの質感はあれはあれで大好き

一方、YouTubeはマイペースというか、伝えたいことが伝わればいいというバッグボーンがあるので、淡々と情報を伝えてくれます。
これがいいんだよなあ。
(少なくとも私が見ているビジネス系とかスポーツ系はそうです。子供さんが見るYouTubeはわかりません)

まとめ

さて、まとめましょう。

CMは無料配信なら流さないといけないのはわかっているけど、なるべく短くしてほしいと。
あるいはスキップできるバーションにして欲しいと。

妥協して、できれば10秒以内でお願いできませんか。TVerさん。
でないと、絶対にYouTubeには勝てませんぞよ。

YouTubeでの広告収入モデルは終わったか

YouTubeはオワコンか

YouTubeはオワコンかとの説も出ていますね。
ブロガーで有名なイケハヤさんが、今やYouTubeから撤退されたので、相当広告収入は期待できないのでしょう。

なんでも彼レベルで月数十万しか入らないとかなんとか。

一般の方なら月数十万てな金額は魅力ですが、彼はネットのおいしいところを知っているので、かける労力と比べると、撤退して他のことで稼いだ方がいいのでしょう。

YouTubeの芸能人ラッシュが止まらない

特に最近のYouTubeは芸能人、著名人ラッシュです。

彼らはテレビでの知名度は抜群ですから、新規参入するなり、いきなり数万から数十万人の登録者数が付きます。

すると一般の方がYouTubeを見たときに出る横のおすすめの欄にも、当然彼らの動画が表示されるわけです。

で、さらに視聴者が増えると。

見てる方の一日の視聴時間は有限なので、一般人の動画と有名人の動画のどちらを見るかと比べたら、やはり有名人の動画ってことになりますよね。

有名人どうしも視聴者の取り合いですから、登録者数の割には再生時間も伸びないと。
すると広告収入も期待できないって感じになるのでしょうか。

まして新型コロナでYouTube側の広告収入も減っているでしょうから、リターンを出すにも出せないのかもですね。

Youtube動画は宣伝ツールとして割り切って使う方が得策かも

思うに今のYouTube動画は、完全に広告媒体として割切った方がいいかもですね。
自社や自店の宣伝として、動画を配信して実店舗にきてもらう。

こういった使い方が一番のような気がします。

このパターンだと広告収入に依存していないので、再生回数もさして気にならない。
時間のある時に動画を撮って編集してアップすればいいと。

100本目標だとか、1日1本とかのノルマも気にならないと。

店の近くの方が見て来店してくれればいいや程度に使えるのではないでしょうか。

一般の方が芸能人と同じ土俵で戦うにはあまりにもきついです。

無駄な争いをして広告収入モデルを狙うより、宣伝ツールとして使う。
これが一番の得策ですね。

**************

久々の更新でした。
日々の忙しさと、新型コロナによる手間数増えのため、なかなかブログを更新する余裕がなかったです。

本日は久々に更新。なぜかって。
風邪で喉が痛いので医者に行って薬もらって休んでいるから。
更新作業でもしようかと。

ブログネタは何にしようかと思っていたのですが、seo業者に対抗してseoネタをぶち込んだところで、勝てる訳がありません。

そう、seoで勝つにはブルーオーシャンが一番なんですね。
レッドオーシャンで勝つには、相当な資金がないと無理ですから。

そんなこんなで今回のブログはYouTubeネタでいってみました。

SEOの基本中の基本

トップページはこちら。
DesignOffice Macs    デザインオフィス マックス

***********************************

こんにちは。イソさんです。

今回はSEO対策の基本中の基本を書いていきます。
各社のWEB担当の方はすでに知っている事柄も多いでしょう。

しかし、インターネットでの表現というのは、多分これは知ってるよねってのは自分勝手な憶測で、知ってて当然てこともしっかりと書いてあげるのが基本なんです。

知ってる人は読み飛ばせばいいし、知らない方には非常に有意義な内容になるからです。

さて、そんなこんなで始めてみましょう。

SEOの基本中の基本、それはタイトル

飲食店で起業したい方へのおすすめ本001

まずSEOの基本中の基本を記します。
ずばり「タイトル」です。

WEBサイトのタイトルというのは、パソコンでホームページを見た際に、上の方にそのページのタブがあると思いますが、そこに表示されている文言です。
タブが混んでいる時は、そのタブの上にマウスを置くと表示されるアレです。

あるいは、Googleで検索をかけた際に、検索結果のページに表示される太めのリンクになっている所の文言です。

これらは全て同じもので、WEBサイトの「タイトル」と呼びます。

ここで一番大事なのは、そのタイトルの中に目的のキーワードを入れていくってこと。

これが非常に重要になってきます。

一例として、ある文章があるとしましょう。

あなたは上司にこの文章をうまくまとめてくれと命令を受けたと。

まずどうするかと言えば、まずタイトル(題名)を読みますよね。

検索も同じことです。タイトルを読んで、あらかたの内容を予測する。これが基本になります。

それほど重要なタイトルですが、ここに御社・御店舗にとって重要な「キーワード」を入れていきます。

SEOにとって、この「キーワード」っていうのは最大の思考ポイントになります。

ユーザーがどんな語句を検索窓に入れるのか。それをどう予測するかで勝敗が別れてきます。

SEOではこのキーワード選定に最も時間をかけます。
いろんなキーワードを書き出して、それこそ検索にかけたり、ツールに入れたりして、そのキーワードの重要度を探っていくのです。

SEOを作る側からしても、この作業ははっきりいって楽しい。
業種業態からキーワードを予測して、どれ位の需要があるかを推理するわけですから、考えるのが好きな人には言うことなしの作業と言えるでしょう。

ここで、キーワードをいくつか絞っていきます。
多すぎてもいけないし、少なすぎてもいけません。

筆者はおおむね3〜5個位までに絞り込みます。
(ここではサラッと言っていますが、相当な時間と労力がかかっています。詳しくは後ほど出てきます)

そして、それぞれの重要度に応じて、順位を付けていきます。

この順位はSEO業者からみた順位なので、正解かどうかは別問題です。

実際の業種別キーワードの重要度は、まさしくその業界にいる人が一番詳しいのです。

ですので、いくつかのキーワードを担当者に見せて、順位付けしてもらいます。

ここで選ばれた1位から3位くらいまでのキーワードをSEOにかけていきます。

SEO対策はタイトルにキーワードを入れていく

ホームページで使う本3

まずタイトルの中に「キーワード」を入れていくのですが、この「キーワード」というのが、SEO的に非常に重要になります。

例えば、犬の服を売る販売サイトを作ったとしましょう。

ここでのタイトルとして考えられるキーワードは、

ワンちゃん
わんちゃん
ドッグ
dog
愛犬

ペット

かわいい
おしゃれ

などがパッと思い浮かぶと思います。

これらの一つ一つをGoogleの検索窓に入れて、ヒット数を見てみます。
「犬」が約 518,000,000 件
「ワンちゃん」が約 187,000,000 件
「わんちゃん」が約 52,300,000 件

ダントツで「犬」が多いですね。

では、この「犬」をキーワードに入れるのかといったら、そんな単純なものではありません。

20年前のSEOなら、間違いなく「犬」でオッケーです。
ページ数が多いってことは、それだけ興味のある人が多いってことですから、そのキーワードを入れてホームページを作っていけば問題なかったです。

ところが今は違います。
この「犬」っていうキーワードはビッグキーワードと言って、SEOをかけても上位表示されにくいキーワードなのです。

すでにいろんなSEO対策をされ尽くしたビッグキーワードは後発組が狙っても、まず上位にはいけません。

ネットの世界というのは、世界中がライバルです。
市内の同業だけがライバルとは訳が違うのです。

世界、少なくても日本中の「犬」関係の人がこのキーワードを使ってくるのです。

そこには大手もいるでしょう。上場企業なんかもいると思います。
かけるお金が桁違いに違うのです。

そこへ後発の個人事業者やベンチャーが勝負をかけても、負けるのが見えています。

なので、勝てるキーワードを探していくのが大事になってきます。

ではそれをどうやって探していくのか。

SEOで勝てるキーワードを探す方法

ホームページで使う本2

さあ、先ほどの続きです。
勝てるキーワードを探していくにはどうすればよいのか。

答えはこれです。
「いろんなツールを使って、検索ボリューム数を見ていく」

SEO業界では各種ツールをいろいろ使います。
有料、無料、いろいろありますが、使い勝手のいいツールを使って、ここでは検索ボリュームを探っていきます。

代表的なツールとしては、それこそGoogleが提供している「キーワードプランナー」なんかは非常に使い勝手がいいです。

ある特定のキーワードを入れると、それに関連したキーワードが出てきます。
月間の検索数なんかも出るので、ここから狙うキーワードの候補を見つけられます。

もちろん、これらのツールだけでは数が少な過ぎるので、他にもいろいろなツールを使っていきます。

その後、検索ボリュームが多すぎず、少なすぎずのキーワードを選定していきます。

それと、地元のお客様をメインターゲットとする商売の場合は(例、飲食店など)、
この「キーワード」にプラス「地名」を忘れてはいけません。

例えば、「コーヒー 熊谷」とか「鮮魚 うまい 大宮」など、自分の店舗や事務所がある所の地名を必ず入れてください。

東京のお店に行きたいのに、九州のお店が表示されても仕方がないので、ユーザーは地名を入れることが多いからです。

さて、こうやって勝てるキーワードを絞りこんでいきましょう。

慣れないとなかなか面倒な作業ですが、ここでキーワードの選定に失敗すると、サイト作成が無駄とまでは言いませんが、リターンが思ってたよりも少なくなります。

コストをかける以上、リターンはなるべく多い方がいいですよね。

なので、このキーワード選定が大変なようなら、その部分だけでも業者に依頼するのもありです。

キーワードのみを受け入れてくれる所を探すのも面倒なら、ウチにご連絡ください。
お問い合わせはこちら。

キーワード選びは慎重に探っていきましょう。

SEOの基本中の基本のまとめ

SEOの基本はタイトルです。

タイトルの中に重要なキーワードを入れましょう。

キーワードの選定は慎重に行いましょう。

面倒なら業者に依頼するのもありです。

さて、ざっと駆け足でキーワードの重要性について語ってきましたが、次回はこのキーワードをどこに入れていくのかを見てみましょう。

 

***************


ホームページ・webからの集客ならお任せ。

お問い合わせは
SEO対策 ホームページ制作 YouTube動画なら埼玉県熊谷市のデザインオフィス マックス
TEL 048-580-3253

 

PAGE TOP